SHASHANK TRIPATHI

EDUCATION	Max Planck Institute for Intelligent Systems, Tübingen PhD Computer Science; Meta Research PhD Fellow 2023 (21/3200 applicar Advisor: Prof. Michael Black	Germar nts) Feb 2021 – presei
		Ditteburgh US
	Carnegie Mellon University, School of Computer Science	Pittsburgh, US
	Master of Science in Computer Vision (MSCV) GPA: 4.15/4.33, Advised by Prof. Kris Kitani	Dec 201
	Birla Institute of Technology and Science (BITS), Pilani	Hyderabad, Ind
	Bachelor of Engineering with Honors in Electronics and Communication Engineering, Minor in Finance GPA: 9.16/10 (top 2% among 1500 students, Merit scholarship recipient)	July 201
PUBLICATIONS	· 3D Human Pose Estimation via Intuitive Physics	
	S Tripathi, L Muller, C P Huang, O Taheri, M J Black, D Tzionas. CVPR 2023	
	 BITE: Beyond Priors for Improved Three-D Dog Pose Estimation 	
	N Rüegg, S Tripathi, K Schindler, M J Black, S Zuffi. CVPR 2023	
	· MIME: Human-Aware 3D Scene Generation	
	H Yi, C P Huang, S Tripathi, L Hering, J Thies, M J Black. CVPR 2023	https://cvml.page.link/min
	PERI: Part Aware Emotion Recognition In The Wild	
	A Mittel, S Tripathi. ECCVW 2022	https://cvml.page.link/per
	Occluded Human Mesh Recovery	
	R Khirodkar, S Tripathi, K Kitani. CVPR 2022	https://cvml.page.link/och
	AGORA: Avatars in Geography Optimized for Regression Analysis	
	P Patel, P C Huang, J Tesch, D T Hoffman, S Tripathi, M J Black. CVPR 2021	https://cvml.page.link/ago
	PoseNet3D: Unsupervised 3D Human Shape and Pose Estimation	
	S Tripathi, S Ranade, A Tyagi, A Agarwal. <i>3DV 2020 (oral)</i>	https://cvml.page.link/po
	Learning to Generate Synthetic Data via Compositing	
	S Tripathi, S Chandra, A Agarwal, A Tyagi, J Rehg, V. Chari. CVPR 2019	https://cvml.page.link/lea
	· C2F: Coarse-to-fine Vision Control System for Automated Microassembly	
	S Tripathi, D Jain, H Sharma. Nanotechnology and Nanoscience Asia, 2018	https://cvml.page.link/c2
	• Sub-cortical morphology and voxel based features for Alzheimer's disease class	
	S Tripathi, SH Nozadi, M Shakeri, S Kadoury. <i>ISBI 2017</i>	https://cvml.page.link/sh
	• Deep spectral-based shape features for Alzheimer's Disease classification	
	M Shakeri, H Lombaert, S Tripathi, S Kadoury. <i>MICCAI-SESAMI, 2016</i>	https://cvml.page.link/sp
ATENTS	· Three-dimensional pose estimation.	
	S Tripathi , S Ranade, A Tyagi, A Agarwal. <i>US Patent 11526697</i>	
	\cdot Generation of synthetic image data using three-dimensional models.	
	S Tripathi, S Chandra, A Agarwal, A Tyagi, J Rehg, V. Chari. US Patent 10909349	
	· Generation of synthetic image data for computer vision models	
	S Tripathi , S Chandra, A Agarwal, A Tyagi, J Rehg, V. Chari. US Patent 10860836	
RESEARCH	3D Human Pose Estimation via Intuitive Physics	Dec 2021 – prese
XPERIENCE	Advisor: Prof. Dimitrios Tzionas, Prof. Michael Black	MPI-IS, Tubing
EXPERIENCE	 Proposed novel biomechanically-inspired intuitive physics terms that are simple, differentiable and compatible with parametric body models such as SMPL/SMPLX 	
	Demonstrated that incorporating differentiable physics in 3D human pose esti	imation ninelines results
	physically-plausible meshes	mation pipennes results
	 Collected Mocap data with extreme poses to test our approach in challenging sci 	onarios
		enarios
	Occluded Human Mesh Recovery	Aug 2021 – Dec 202
	Advisor: Prof. Kris Kitani	СМ
	 Proposed a novel top-down mesh recovery architecture capable of leveragin image spatial context for handling multi-person occlusion and crowding 	g
	AGORA: Avatars in Geography Optimized for Regression Analysis	Aug 2020 – Dec 202
	Advisor: Prof. Michael Black	MPI-IS, Tubinge
	· Developed a 3D human shape and pose estimation model trained on synthetic of	

- · Added robustness to occluded scenes and support for the SMIL child model
- · Evaluated our model on several 2D and 3D datasets and ran ablation studies

PoseNet3D: Unsupervised 3D Human Shape and Pose Estimation

Collaborators: Dr. Amit Agarwal, Dr. Ambrish Tyagi

- · Proposed self-consistency and adversarial losses to train a novel unsupervised teacher model to estimate 3D human pose from RGB videos
- · Weak supervision from the teacher was used to train a student model for estimating SMPL body mesh
- · Solved issues such as occlusion, domain-gap and temporal jitter leading to realistic and smooth 3D sequence reconstructions on multiple in-the-wild video datasets

Learning to Generate Synthetic Data via Compositing

Advisors: Prof. James Reha, Dr. Amit Agrawal, Dr. Ambrish Tyagi

- · Proposed a network for generating novel composite images that retain scene context and realism • Developed algorithms for efficient training of object detection and image classification models on synthetic composite data, using an online hard-positive mining approach
- Improved baseline Faster-RCNN mAP by 3.5% and baseline SSD mAP by 2.7% on various datasets.

ClassPaths: Weakly supervised class-specific subnets for faster-inference Dec 2017 – Dec 2018 Advisors: Prof. Kris Kitani, Dr. Ambrish Tyaqi, Dr. Varsha Hedau CMU

- Exploited class-wise parameter redundancy and activation map sparsity for finding class-specific subnets (ClassPaths) for faster inference
- · Proposed an auxiliary supervisor network trained on a multi-loss formulation to jointly optimize accuracy, sparsity, pair-wise selectivity and quantization on the learned class-specific subnets
- · Deep-networks employing ClassPaths achieved similar performance as a full capacity network, with 40%-60% FLOPS reduction during inference

Deep Spectral-based Shape Features for Alzheimer's Disease	Feb 2016 – Jul 2016	
Classification		

Undergraduate Thesis, Advisor: Dr. Samuel Kadoury

- · Developed an unsupervised framework for classification of Alzheimer's disease patients using noisy T1weighted MRI brain images
- Proposed a combination of grey-matter voxel-based intensity variations and 3D structural (shape) features parameterized with a spherical-harmonics representation
- · Results presented near state-of-the-art accuracies (>89%) outperformed conventional MRI shape-based strategies by 22%-27%

	C2F: Coarse-to-Fine Vision Control System for Automated Microassembly Advisor: Dr. H D Sharma Central Electronics Engineering Research Insti	– Dec 2014 itute, Pilani
	• Developed a completely automated, visual-servoing based closed loop system to permicromanipulation and microassembly tasks	-
	 Solved challenges around object recognition/tracking, scene understanding, path planning an avoidance 	d obstacle
	 Results led to a ~75% reduction in setup and run time as compared to manual operation, while any risk of collision during grasp-and-drop experiments 	mitigating
SCHOLARSHIPS	Winner of the Meta Research PhD Fellowship Award 2023	2023
AND AWARDS	 Best business model and best pitch, Cyber Valley Startup Incubation Program 2022, Germany for our startup "YOGI – a virtual yoga classroom" 	2022
	IISc Bangalore Summer Research Fellowship – top 20 across India	2015
	Best Technical Association Award, BITS-Pilani	2014
	 Tournament Winner, Cricket, Arena'13 National Sports Festival 	2013
	 Undergraduate MERIT scholarship, BITS Pilani – top 2% students 	2012
	 Founder President's Scholarship, Amity International – top student for 6 years 	2011
	• Junior Science Talent Search Examination (JSTSE) Scholarship – Ranked 22 in 20,000 applicants	2008
ACADEMIC DUTIES	Reviewer – CVPR 2022, BMVC 2022 Reviewer – ICCV 2021, CVPR 2021 Reviewer – ECCV 2020 (<i>Outstanding reviewer award</i>) Reviewer – CVPR 2020	
TEACHING	Teaching Assistant – 16-720: Computer Vision, Prof. Kris Kitani Fal	ll 2018, CMU

Head Teaching Assistant – 16-385: Computer Vision, Prof. Ioannis Gkioulekas **EXPERIENCE**

Feb 2019 - Nov 2019

Amazon Lab126

May 2018 – Nov 2018 Amazon Lab126

Univ. of Montreal

PROFESSIONAL EXPERIENCE	 Amazon Applied Scientist II (AS-II) (promoted from AS-I in Sep 2020) Improved 3D human activity reconstruction from 2D videos for enhancing action resupported Computer Vision algorithm development for the new Echo Show. Workebody measurement estimation from images. Amazon Lab126 Applied Scientist Intern Worked on task-aware generation of synthetic image composites for training deep Franklin Templeton Investments Summer Intern Project: Financial Modelling for Tactical Asset Allocation Built machine-learning models for capturing statistical associations like lear directional causality which achieved a 12% improvement in hit-rate for forecasting 	ed on virtual try-on and Cupertino, USA May 2018 – Aug 2018 networks Hyderabad, India May 2015 – Aug 2015 d-lag correlation and one	
TECHNICAL SKILLS	Programming LanguagesPython, C++/C, MATLABTools and FrameworksPytorch, Tensorflow, Blender		
RELEVANT COURSES	16-826 Visual Learning and Recognition, CMU10-601 Introduction to Machine Learning, CMU16-822 Geometry Based Methods in Vision, CMU16-811 Mathematical Fundamentals for Robotics, CMU16-720 Computer Vision, CMU16-811 Mathematical Fundamentals for Robotics, CMU		
ACADEMIC PROJECTS	 Learning Scene Saliency Maps Using Superpixel-augmented Aug 2017 – Dec 2017 Convolutional Neural Networks Extracted SLIC superpixel segmentations in input images and defined a range and color separation vector as input to a Siamese Convolutional Neural Network (CNN) Trained the network on the ECSSD saliency dataset. Superpixels allow for significant speedup (4x) in training while capturing a larger spatial context, leading to more precise saliency maps Towards Integrating Model Dynamics for Sample Efficient Reinforcement Jan 2017 – May 2017 Learning Developed a principled approach for solving sample inefficiency issues while deploying model-free reinforcement learning in real environments Learned a dynamics model of the world by assuming domain-specific priors on real-world episodes. Used the learned dynamics model to augment real-world episodes as the training progressed 		
	Established that augmenting real-world data using an approximate world-mod more sample efficient than naïve model-free reinforcement learning		
LEADERSHIP	 Member, External Affairs Committee (Graduate Student Assembly), CMU Secretary, Electrical and Electronics Association, BITS Pilani Led a team of 37 members. Organised 25 major events, 6 during the technical festival Computer Vision Mentor, Student Mentorship Program (SMP), BITS Pilani Conducted evening classes for teaching 30 junior batch students Represented BITS Pilani cricket team in inter-college cricket tournaments and sports festivals Organizer of National Seminar on Indian Space Technology (NSIST-2014) 		
EXTRA- CURRICULAR	 Teaching volunteer at Nirmaan – BITS Pilani www.nirmaan.org Teaching volunteer at LaSalle Boys and Girls Club, Montreal www.bgclasalle.com 	Mar 2014 – Dec 2015 Mar 2016 – Jul 2016	
	 Teaching volunteer at Amitasha – Teaching the girl child www.amity.edu/amitasha 	Mar 2009 – Mar 2010	

www.amity.edu/amitasha