
Synthesizer
Generate composite images 
using given background and 
o p t i m a l l y t r a n s f o r m e d 
foreground, such that it can 
‘fool’ the target network !
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Task-aware 
Generate synthetic data which is tuned to the task 
Efficient 
Generate fewer and more useful composite images compared 
to random data generation and data augmentation 
Realistic 
Generated synthetic data should be context-aware and 
realistic in order to minimize domain gap

‣ Target-in-the-loop (TIL) training paradigm: Synthesizer and 
target network are trained iteratively, in lockstep 

‣ Maximizing target network failure during compositing 
ensures efficient generation (EG) of synthetic data 

‣ Implicit naturalness priors learnt by the discriminator result 
in context-aware (CA) generation   

‣ Adding hallucinated artefacts in synthetic backgrounds 
achieves blending artefact robustness (BAR)  

‣ Demonstrated applicability on image-classification, object/
instance detection using various architectures while using 
<50% synthetic data compared to SOTA

Our approach

Learning to Generate Synthetic Data via Compositing 
Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M. Rehg, Visesh Chari 

Goal Experiments

Blending Artefact Robustness 

Realistic

Efficient task-aware generation of synthetic data by 
compositing images. Target-in-the-loop training results in 
2.7-3.5% improvement in classification and object detection 
accuracy.

Comparison with compositing works

TERSE Data Generation

‣ Discriminator results in realistic synthetic 
data generation

‣ TIL SSD is more robust to occlusions, truncations, 
small scale, rare context etc.
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Comparison of AffNIST & Our Data for Training
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easy exampleshard examples

‣ Achieved baseline accuracy with <50% 
synthetic data

‣ More hard positives generated than other image 
compositing approaches

Task-aware 
‣ Generated increasingly diverse modes in 

successive TIL iterations

‣ Improved baseline SSD accuracy on Pascal VOC

‣ Improved baseline Faster-RCNN accuracy on GMU Kitchen 

AffNIST Classification Error
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‣ Better classification error on AffNIST dataset
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Task-aware Efficient Realistic Synthesis of Examples

⋆ partial BAR using randomized blending/blurring 
† does not generate synthetic data for training


