

Learning to Generate Synthetic Data via Compositing Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M. Rehg, Visesh Chari

Goal

Efficient task-aware generation of synthetic data by compositing images. Target-in-the-loop training results in 2.7-3.5% improvement in classification and object detection accuracy.

TERSE Data Generation

Task-aware

Generate synthetic data which is tuned to the task

Efficient

Generate fewer and more useful composite images compared to random data generation and data augmentation

Realistic

Generated synthetic data should be context-aware and realistic in order to minimize domain gap

Task-aware Efficient Realistic Synthesis of Examples

Our approach

- Target-in-the-loop (TIL) training paradigm: Synthesizer and target network are trained iteratively, in lockstep
- Maximizing target network failure during compositing 🛱 ensures efficient generation (EG) of synthetic data
- Implicit naturalness priors learnt by the discriminator result in context-aware (CA) generation
- Adding hallucinated artefacts in synthetic backgrounds achieves blending artefact robustness (BAR)
- Demonstrated applicability on image-classification, object/ instance detection using various architectures while using <50% synthetic data compared to SOTA

Comparison with compositing works

Method	TIL	EG	CA	BAR
Cut-Paste-Learn [1]				*
Context-Data-Augmentation [2]			✓	*
Copy-pasting GAN [3] [†]				*
TERSE (Ours)	~	✓	✓	✓

partial BAR using randomized blending/blurring

† does not generate synthetic data for training

I Mishra, and Martial Herbert. Cut, paste and Learn: Surprisingly easy synthesis for instance detection. 1 D Dwibedi, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017

ulien Mairal, and Cordelia Schmid. Modeling visual context is key to augmenting object detection [2] N Dvornik, In IEEE European Conference on Computer Vision (ECCV), 2018

[3] R Arandjelovic, A Zisserman. Object discovery with a Copy-Pasting GAN. arXiv preprint arXiv:1905.11269 (2019)

0

Random background

Dataset	coca	coffee	honey	hunt's	mahatma	nature	nature	palmoliv	ve pop	pringle	es red	mAP
	cola	mate	bunche	s sauce	rice	v1	v2	orange	se-	bbq	bull	
									cret			
Baseline faster-RCNN	81.9	95.3	92.0	87.3	86.5	96.8	88.9	80.5	92.3	88.9	58.6	86.3
Cut-Paste-Learn	88.5	95.5	94.1	88.1	90.3	97.2	91.8	80.1	94.0	92.2	65.4	88.8
Ours	86.9	95.9	93.9	90.2	90.0	96.6	92 .0	87.6	94.9	90.9	69.2	89.8

Better classification error on AffNIST dataset

Lab126

amazon

Improved baseline SSD accuracy on Pascal VOC

IoU	Baseline	[1]	[2]	Ours no- \mathcal{D}	Ours + \mathcal{D}
0.5	78.93	76.65	76.81	79.61 (+0.68)	79.53 (+0.60)
0.6	69.61	66.88	66.91	70.39 (+0.78)	70.67 (+1.06)
0.7	52.97	52.12	50.21	53.71 (+0.74)	54.50~(+1.53)
0.8	29.54	28.82	28.14	31.96(+2.44)	32.22 (+2.68)

Hardness of Synthetic Data Context-Data-Augmentation Cut-Paste-Learn hard example ₩ 30 easy examples Target Probability

Qualitative Results

TIL SSD is more robust to occlusions, truncations, small scale, rare context etc.

