
Results

Conclusion:

Introduction

Alzheimer’s disease (AD) is the most general cause of degenerative dementia. Our work presents an unsupervised framework for the
classification of Alzheimer’s disease (AD) patients into diagnostic groups: AD, EMCI (Early Mild Cognitive Impairment), LMCI (Late Mild
Cognitive Impairment) and Normal Control (NC), based on features extracted from select sub-cortical region-of-interests (ROIs)

We use a combination of features, namely:

• Gray-matter voxel-based intensity variations

• Structural alterations (shape), extracted with a spherical harmonics framework

✓ Shape analysis coupled with mean VIs gives superior results as compared to only shape coordinates or only voxel
intensities indicating that these features provide complementary information

✓ Results show linear SVM is slightly superior than (or equal to) RBF SVM
✓ Our approach performs particularly well for the more challenging classification problems: NC vs EMCI (75.5%), AD vs. LMCI

(76.8%) and EMCI vs LMCI (71%)
✓ Future work will involve combining additional bio-markers such as cortical thickness data, volume, voxel-wise tissue

probability and density of gray matter.
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Experiment II: Correlations between putamen volume

and neuropsychological performance

▼ A volumetric analysis comparing children with BECTS to a group of
healthy controls. Significant fareduction (F = 4.68 (37, 34), P < 0.04) was

observed in patients with BECTS compared to normal individuals.

Dataset

• 600 T1-weighted subject MRI scans (variable resolution, volumetric 3D MPRAGE or equivalent protocols)
• 4 separate cohorts: AD, EMCI, LMCI and NC. Criteria: age, cognitive symptoms, neuropsycological test score like Mini-

Mental State Examination (MMSE), Clinical Dementia Rating (CDR) and Memory Box score

ADNI: Alzheimer’s Disease Neuroimaging Initiative

• Launched in 2003 as a $60 million 5-year public private partnership

▼ In control group, results show a statistically significant correlation between left putamen
volumes obtained from both the manually corrected segmentations and MBS and the
working memory index (p<0.05). Interestingly, while the patient group showed a positive
correlation, the control group showed a negative correlation.

SUB-CORTICAL SHAPE MORPHOLOGY AND VOXEL-BASED 

FEATURES FOR ALZHEIMER’S DISEASE CLASSIFICATION

Methodology and Pipeline
1. ROBEX[1] Brain Extraction: Fits a triangular mesh, constrained by a shape model, to the probabilistic output of a

supervised brain boundary classifier
2. Atlas-based sub-cortical segmentation

• Registration: FLIRT toolkit, part of the FMRIB Surface Library (FSL) package
• Transformation Matrix: Subject space to MNI152 atlas space. Affine transformation, correlation ratio similarity

measure and trilinear interpolation
• Inverse Transformation Matrix: AAL[2] atlas space to subject space; Nearest neighbour interpolation

4. Classification Models
• Combined feature vector: voxel-intensities and shape features
• Principal component analysis (PCA) transformation for dimensionality reduction
• Supervised classification: Two-class SVM, both linear and RBF kernels

➢ By combining multi-modality features, this work demonstrates the potential of exploiting complementary features to improve
cognitive assessment

Classification accuracy (ACC), sensitivity (SEN), and specificity (SPE)(%) values using methods I-III, for 6 different pairs 
of binary diagnostic groups obtained from the ADNI database.    stands for p < 0.001

Extracted sub-cortical structures from 12 ROIs 
obtained from the atlas-based segmentation approach

Participant Distribution

Overview of the proposed pipeline for classification of AD patients using a multi-
region (n=12) approach combining intensity and shape-based features

Morphological group differences between AD, LMCI, EMCI groups with normal
controls (NC). Distance and p-value maps are shown for each pair of cognitive
groups

• For testing the statistical significance of performance measures, unpaired 
student t-tests were performed between the methods (I), (II) and (III)

• The accuracy values are directly proportional to the morphological 
separation in disease progression

3. Morphology Feature Extraction (SPHARM PDM)
• Sub-cortical masks, including the hippocampus, as inputs
• SPHARM representation: 3D surface mesh decomposed using the

spherical harmonics basis function
• SPHARM PDM[3]: SPHARM representation transformed into a

triangulated surface, containing 1002 landmark coordinates
• Features: x, y and z coordinates of the SPHARM-PDM landmark coordinates

SPHARM PDM feature extraction[4]


